
Downloaded from UvA-DARE, the institutional repository of the University of Amsterdam (UvA)
http://dare.uva.nl/document/352033

File ID 352033
Filename 3: Game design theory

SOURCE (OR PART OF THE FOLLOWING SOURCE):
Type Dissertation
Title Engineering emergence: applied theory for game design
Author J. Dormans
Faculty Faculty of Science
Year 2012
Pages x, 288
ISBN 9789461907523

FULL BIBLIOGRAPHIC DETAILS:
  http://dare.uva.nl/record/407652

Copyright
 
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or
copyright holder(s), other than for strictly personal, individual use.
 
 
UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl)

http://dare.uva.nl/document/352033
http://dare.uva.nl/record/407652
http://dare.uva.nl


He that would perfect his work must first

sharpen his tools.

Confucius

3
Game Design Theory

The previous chapters focused on the nature of games. This chapter discusses
available tools and theory to assist developers designing games. A number of de-
sign guidelines, methods, theories and tools have been developed over the past
years. Some of these were developed specifically to assist the design process,
while others were developed as analytical tools, work methods, or documenta-
tion techniques. The main approaches and attempts to assist game designers
that have been developed up until now and that are discussed in this chapter
are: design documents, the MDA framework, play-centric design methodologies,
game vocabularies, design patterns, finite state machine diagrams, Petri nets,
and finally different types of game diagrams. Most of these methods were not
developed as design tools, yet all of them can be used as such or might have
an impact on the development of new design methods and tools. This chapter
discusses the merits of all these methods for the purpose of developing design
methods and tools.

The reader should note that the common discourse about these methods is
quite diffuse. Within the game industry, and to a lesser extent within game
research too, there is no fixed vocabulary. Many concepts are used quite infor-
mally, and terminology frequently overlaps or even conflicts. For example, the
term ‘game design document’ captures a wide variety of different documents that
are created for as many different reasons. Furthermore, there seems to be little
distinction between analytical methods and design methods, and the two terms
are sometimes used interchangeable. I have tried to use the original terminology
as much as possible. Hopefully I have done so without creating confusion.

In addition, not everybody in the game industry sees the benefits of method-
ological approaches to game design, such as the ones discussed in this chapter
and presented in the following chapters. The two most common arguments
against design methodologies are that they have little practical value for game
design and that they cannot replace the creative process of designing games. I
will address these arguments in the last section before drawing a conclusion.



44 Joris Dormans | Engineering Emergence

3.1 Design Documents
Almost every game company creates design documents. On the Internet

many different templates can be found that are used by different companies, and
virtually every book that discusses game design has its own template. The notion
and practice of design documents is as diffuse as it is divers. There are many
different reasons to write these documents, and there are many different moments
in the design process in which companies do so. Game design documents are
sometimes used to record designs before they are build, and sometimes they are
used to record designs after the games have been built. They typically contain
descriptions of a game’s core mechanics, level designs, notes on art direction,
characters and their backgrounds, etcetera. Some advocate lengthy detailed
descriptions covering every detail of a game, while others favor brief documents
that capture design targets and design philosophy.

Over the years, writing game design documents has become a common in-
dustry practice, although no standard emerged that describes how, when or to
what purpose these documents should be written. It is not uncommon to pro-
duce an entire set of documents, each focusing on a different part of the design
or facilitating a different stage of the design process (see for example Adams &
Rollings, 2007; Rogers, 2010). Without a widely accepted template for design
documents, they do not carry over from company to company or from university
to professional career. Without a widely accepted template, design documents
cannot grow into a standard methodology. The fact that most design documents
have their own style and use their own unique concepts to describe games does
not help to create a generic body of knowledge beyond the scope of each individ-
ual project or company. With no industry wide standard in sight, it is unlikely
that design documents are going to be effective in the near future.

What is more, design documents might not be the right tool to deal with the
dynamic, emergent behavior of games. Game design documents that are written
before any prototype is made are the equivalent of requirements documents in
software engineering. A requirements document lists the requirements and func-
tionality of a new, custom-built software application. Its creation is one of the
first steps in the ‘waterfall method’ of developing software, in which each step is
completed before proceeding to the next step. This document is typically writ-
ten before the software is built and frequently is part of the agreement between
contractor and client. The waterfall method assumes that all requirements are
known and can be recorded before the software is built. Within software engi-
neering creating and documenting functional designs is a time-tested practice,
although, with the recent popularity of agile development methods, the prac-
tice of writing complete functional designs as a blueprint for a new software
application has lost its appeal.

There are three important differences between designing games and busi-
ness applications using a waterfall method that make it difficult or inefficient
to transfer the practice from general, custom software development to game
development:



Chapter 3 | Game Design Theory 45

1. Game design is a highly iterative process; no matter how experienced a
designer is, chances are that the design of a game is going to change as it
is being built. Due to the emergent nature of games (see chapter 1) it is
often impossible to accurately predict the behavior of a game before it is
implemented. In games changes to the implementation are to be expected.1

2. Not all games are created within a contractor-client context. This is es-
pecially true for entertainment games, which development shares more
with commercial, off-the-shelf software development. Without this con-
text there is less need to document the design before the game is built.
Although publishers and funders for entertainment games set goals and
milestones, they do not function in the same way.

3. Games are rarely built with upkeep or future development in mind, reduc-
ing the necessity to create documentation that aids future developers. De-
spite the fact that many sequels are produced in the game industry, many
sequels are built from scratch, surprisingly little code is being reused. From
the perspective of software engineering this is a bad practice. However, as
the development techniques are still evolving fast and a new generation of
hardware becomes available roughly every five or six years this practice
makes more sense from the perspective of the game industry.2

Many designers regard the game design document as a necessary evil, and
some have dismissed the practice entirely (Kreimeier, 2003). Everyone agrees
that designs need to be documented and communicated to the team, but in
practice people hardly look at design documents (Keith, 2010, 85-87). Stone
Librande, creative director at Electronic Arts, experimented with a technique
he calls one-page designs to circumvent some of these problems (2010). His
approach is to create design documents that are more like data visualizations
instead of multi-page, written texts. One-page design documents are posters
that capture the essence of a game visually (see figure 3.1). These documents
have four advantages over the traditional design documents:

1. Most designers find them more interesting to create, making the task of
creating a design document less tedious.

2. Because there is a spatial constraint (although the size of the page is left
to the whims of the designer), the designer is forced to focus on the essence
of the game. This makes the document a better match for the agile devel-
opment process often found in games.

3. As people tend to like the way these documents look, they tend to stick
them to walls, increasing their exposure and impact.

1Although, it must be noted that this is also increasingly true for business software.
2The developers of reusable game components that are sold to game studies (‘middleware’)

are probably the exception to this rule. They do maintain and reuse their code, but as their
core business is not developing games, this practice does not carry over to game design.



46 Joris Dormans | Engineering Emergence

Figure 3.1: A sample one-page design document from Librande (2010).

4. Stone Librande suggests leaving plenty of whitespace on the documents in
order to invite team members to scribble notes on them. This keeps the
documents up to date.

One-page design documents solve some of the problems associated with design
documents, but not all. There is still no standard for documenting gameplay,
mechanics and rules. Each one-page design document is created for a particular
game, and although the product should be understandable and communicative,
it cannot set a standard. In addition, the lack of detail, which makes a one-page
design document more flexible and therefore is one of its strengths, makes it less
suited to record designs; one-page design documents are very good at capturing
the design vision, goals and direction, but they cannot function as a technical
blueprint at the same time.

3.2 The MDA Framework
The MDA framework, where MDA stands for mechanics, dynamics and aes-

thetics, has been used to structure the game design workshops at the Game
Developers Conference (GDC) for at least eleven years running (from 2001 to
2011).3 In contrast to the practice of game design documents, the MDA frame-
work quite consciously tries to present a generic approach to the difficulties

3Unfortunately in software engineering the same acronym is widely used to denote Model
Driven Architecture, this might lead to some confusion. In this dissertation MDA always
stands for the mechanics, dynamics and aesthetics framework.



Chapter 3 | Game Design Theory 47

Figure 3.2: The MDA framework (after Hunicke et al., 2004).

involved in designing games. It has been quite influential and it seems to be one
of the most frequently recurrent frameworks found in university game design
programs all over the world. It probably is the closest thing the industry has to
a standardized game design method.

The MDA framework breaks down a game into three components: mechanics,
dynamics and aesthetics, which correspond to the game’s rules, its system, and
the fun it brings (Hunicke et al., 2004). The MDA framework teaches that
designers and consumers of games have different perspectives on games. Where a
consumer notices the aesthetics first and the dynamic and mechanics afterwards,
a designer works the other way round. A designer creates mechanics first and
builds dynamics and aesthetics on top them (see figure 3.2).

The MDA framework is designed to support an iterative design process and
to help designers to assess how changes in each layer might affect the game as a
whole. Each layer has its own design goals and effects on the game. Mechanics
determine the actions a game allows and it affects the game’s dynamic behavior.
The dynamics layer addresses concepts such as randomness and complexity to
explain a game’s behavior. Finally, the aesthetics layer is concerned with the
game’s emotional target: the effect it has on the player. The MDA framework
describes eight types of fun as prime aesthetic targets. The eight types of fun
are: sensation, fantasy, narrative, challenge, fellowship, discovery, expression
and submission (Hunicke et al., 2004; LeBlanc, 2004).

Despite the influence of the MDA framework and the long running GDC game
design workshop, as a conceptual framework the MDA never seems to have
outgrown its preliminary phase. The distinction between the mechanics and
dynamics layers is not always clear, even to the original authors (see LeBlanc,
2004). The mechanics are clearly game rules. But the dynamics emerge from
the same rules. Yet, the original MDA paper places game devices such as dice
or other random number generators in the layer of the dynamics. To me, those
devices would seem more at home in the layer of the mechanics. Likewise,
the aesthetics layer seems to contain only the player’s emotional responses. The
visuals and story that cue these responses, which would commonly be understood
as being part of an aesthetics, seem absent from the framework. The eight kinds
of fun comprise a rather arbitrary list of emotional targets, which is hardly
explored with any depth. Apart from short one-sentence descriptions, Hunicke
et al. do not provide exact descriptions of what the types of fun entail. They do
state their list is not complete, but they do not justify why they describe these
eight, or even hint at how many more types of fun they expect to find. What



48 Joris Dormans | Engineering Emergence

is more, the whole concept of ‘fun’ as the main target emotion of games has
been criticized by Ernest Adams and Andrew Rollings (2007, 119), and Steven
Johnson (2005, 25-26), among others. Games can aspire to target a much wider
variety of emotional responses. Some additional MDA articles (such as LeBlanc,
2006) have appeared over the years but they have not taken away these concerns.

3.3 Play-Centric Design
A more thorough method of iterative game design is described by Tracy

Fullerton et al. (2006). Coining the term ‘play-centric design’ to describe their
method, Fullerton et al. advocate putting the players at the heart of a short
design cycle. They advise that game prototypes are built quickly and tested
often. Because of the short design cycle more innovative options can be explored
with a reduced risk measured in effort and time.

Play-centric design distinguishes between two levels in a game: the formal
core and a dramatic shell surrounding it. A game’s formal core consists of
rules, objectives and procedures whereas the dramatic shell consists of premise,
character and story. Combined, these two layers contribute to the dynamic,
emergent behavior that supports play. It is the objective of play-centric design
to tune this behavior into a specific target experience. In this context Fullerton
et. al. restate Katie Salen and Eric Zimmerman’s description of games as a
“second-order design problem” (2004, 168). A designer designs the game, but
the game delivers the experience; the designer does not create the experience
directly.

This trend, to involve the player in the design process, is gaining momen-
tum in both academia and development studios. The human-centered design
or user-centered design, originating from software engineering, has been a big
influence on this trend. It should come as no surprise that Microsoft’s game
studios are front runners in this respect, as Microsoft has much experience with
similar methods used in regular software development. Pagulayan et. al. (2003)
describe the heuristics and structured user tests that have been used to develop
several games within Microsoft. Slowly but surely these methods have become
an integral part of designing games, and more and more these methods rely on
a combination of qualitative methods such as heuristic evaluations (Sweetser
& Wyeth, 2005; Schaffer, 2008) and quantitative metrics such as plotting the
locations of player death’s onto a level map (Swain, 2008).

Play-centric design focuses on the process of designing games. By structuring
the design process, involving the player, gathering data from prototypes, and
iterating many, many times everything is done to ensure that the end product,
the finished game, is as good as the design team can make it. For a professional
game designer these methods are (or at least should be) regular tools of the
trade. They do not make the process of designing games less hard, but they do
help the designer to stay on track, break the task down into a series of smaller
subtasks, and steadily progress towards a high quality end product.

With the proper methods and tools this process can be refined. The play-



Chapter 3 | Game Design Theory 49

centric approach would benefit from methods that can speed up each iteration
or increase the improvements that are made in each one. There are several types
of methods that seem applicable. Certainly formal models of game design are
widely accepted amongst them, but also techniques to gather and process data
collected during play-tests.

3.4 Game Vocabularies
Not only designing games is a hard task, talking about them is already diffi-

cult: there is no common language to describe their inner workings. There are
plenty of books and articles that discuss games as rule-based systems, but almost
all of these choose their own words. More often than not, these vocabularies are
very good at describing particular games, but they rarely transcend into a more
generic vocabulary.

In a 1999 Gamasutra article designer Doug Church sets out to create a frame-
work for a common vocabulary for game design (Church, 1999). According to
this framework, a game design vocabulary should consist of “formal abstract
design tools”, where “formal” indicates that the vocabulary needs to be precise,
and “abstract” indicates the vocabulary must transcend the particularities of a
single game. For Church the vocabulary should function as a set of tools, where
different tools are suited for different tasks, and not all tools are applicable for
a particular game.

Doug Church describes three formal abstract design tools in his article:

1. Intention: Players should be able to make an implementable plan of their
own creation in response to the current situation in the game world and
their understanding of the game play options.

2. Perceivable Consequence: Game worlds need to react clearly to player
actions; the consequences of a player’s action should be clear.

3. Story: Games might have a narrative thread, whether designer-driven or
player-driven, that binds events together and drives the player forward
toward completion of the game.

These three tools form a list that is by no means complete or exhaustive, nor
did Doug Church intend it to be. Between 1999 and 2002 the Gamasutra website
hosted a forum where people could discuss and expand the framework. The term
‘design tool’ was quickly replaced by the term ‘design lexicon’ indicating that
the formal abstract design tools seem to be more successful as an analytical
tool than a design tool. Bernd Kreimeier reports that “at least 25 terms where
submitted by almost as many contributors” (Kreimeier, 2003). As a project
the formal abstract design tools have been abandoned; however, Doug Church’s
article is often credited as one of the earliest attempts to deal with the lack of a
vocabulary for game design, even though his framework never caught on.

There are several researchers that carry on the torch that Doug Church lit.
The “400 Project” initiated by Hal Barwood and Noah Falstein is one example
(Falstein, 2002). Barwood and Falstein set the goal of finding and describing



50 Joris Dormans | Engineering Emergence

Figure 3.3: One of Craig Lindley’s taxonomies (after Lindley, 2003).

400 rules of game design that should lead to better games. The project website
lists 112 rules.4 However, the project seems to be abandoned as well; the last
update to the website was in 2006.

Craig Lindley (2003) uses orthogonal taxonomies to map games onto a hy-
pothetical space defined by dominant game forms such as narratology (focus on
story), ludology (focus on gameplay) and simulation (focus on realism). Individ-
ual games can be mapped to the space depending on their relative closeness to
each of these extremes (see figure 3.3). Lindley describes a few possible, comple-
mentary taxonomies using one-, two- and three-dimensional spaces. He designed
these taxonomies as a high level road map to inform the design team of the in-
tended design target of a particular game project. The taxonomy also suggests
suitable tools and techniques borrowed from other fields; a game that veers to-
wards the narrative side will benefit more from traditional storytelling techniques
than a game that is a simulation first and foremost. Lindley’s game taxonomies
provide a systematic framework in which many of the formal abstract design
tools can be embedded, providing structure to what otherwise would remain a
loose collection of labels.

The game ontology project takes the notion of a common vocabulary for
games into yet another direction. This project attempts to order snippets of
game design wisdom into one large ontology. An ontology is a large classifica-
tion scheme that has a hierarchical organization. Each entry in the ontology
describes a common structure found in games. It lists strong and weak exam-
ples of the structure and lists parent and children categories. For example, the
ontology entry “to own” is used to describe the game structure in which game
entities can own other game entities. An example would be the game entity
‘Mario’ that collects ‘mushrooms’ and ‘stars’, etc. “To own” is a child of the

4http://www.theinspiracy.com/400_project.htm (last visited June 23, 2011).



Chapter 3 | Game Design Theory 51

“entity manipulation” entry which, in turn, has three children: “to capture”,
“to possess” and “to exchange” (Zagal et al., 2005).5

The game ontology project aims to explore the design space of games without
prescribing how to create good games. More than Doug Church’s formal abstract
design tools, it primarily is an analytical tool; it aims at understanding games
rather than building them. This is a general characteristic of this and other
game vocabularies. Their success as an analytical tool does not translate easily
to being successful as a design tool. Obviously, the development of a high level,
consistent language to describe common game structures will help designers in
the long run, and, as all the vocabulary builders point out, can be a great help in
mapping the relatively unexplored areas of the game design. In fact, all authors
describe how their vocabularies can be used as a brainstorming tool, simply
by selecting and exploring random combinations of notions describing common
aspects of games. However, no matter how useful this practice can be, it can
usually only help with generating ideas. This is only a small part of the entire
process of building a game, yet it requires considerable investment on the part
of designers who must familiarize themselves with many new concepts to learn
the vocabulary. The game ontology project, for example, consists of over one
hundred separate entries, each of which ties in with several other entries in the
ontology. For game developers it can be difficult to see what is the actual return
on their investment in learning a vocabulary of that size.

The many different approaches towards a common vocabulary for games ag-
gravate this problem.6 Every vocabulary has its own unique approach and ter-
minology. Simply determining where and how all these approaches overlap or
collide makes an extensive academic research project in itself. Even when a game
designer invested the time and effort to learn one of these vocabularies, effec-
tively working together or sharing knowledge with somebody who has learned
a different vocabulary is still going to be a problem. The only thing all these
vocabularies seem to share is their rejection by game designers. In the words
of Daniel Cook: “Academic definitions of game design contain too many words
and not enough obvious practical applications where people can actually use the
proposed terminology” (2006).

3.5 Design Patterns
Staffan Björk and Jussi Holopainen’s work on game design patterns also seeks

to address the lack of vocabulary for game design (2005, 4). However, their
approach is slightly different as they drew inspiration from the design patterns
found in architecture and urban design as explored in the works of Christopher
Alexander. According to Alexander: “There is a central quality which is the
root criterion of life and spirit in a man, a town, a building, or a wilderness.

5The project has an active web page where all entries can be found: http://www.

gameontology.com (last visited July 8, 2011).
6The discussion here cannot address all vocabularies out there. One approach worth men-

tioning focuses on tracking gameplay innovations: the Game Innovation Database found at
http://www.gameinnovation.org/ (last visited October 22, 2010).



52 Joris Dormans | Engineering Emergence

This quality is objective and precise but it cannot be named” (1979, ix). His
pattern language is designed to capture this quality. Patterns are presented as
problem and solution pairs, where each pattern presents a solution to a common
design problem. These solutions are described as generically as possible so that
they might be used many times (Alexander et al., 1977, x). The patterns are all
described in the same format. Each pattern also has connections to ‘larger’ and
‘smaller’ patterns within the language, where smaller patterns help complete
larger patterns (Alexander et al., 1977, xii).

This idea has been transfered to the domain of software design by Erich
Gamma, Richard Helm, Ralph Johnson and John Vlissides.7 Within software
engineering the principles of object-oriented programming take the place of
Alexander’s unnamed quality. Software design patterns are a means to record
experience in designing object-oriented software (Gamma et al., 1995, 2). Today,
software design patterns are common tools in teaching and designing software.

A pattern framework for game design following these examples was suggested
by Bernd Kreimeier (2002). However, Björk and Holopainen break away from
existing design patterns. According to them, design patterns as problem-solution
pairs do not suit game design because:

“First, defining patterns from problems creates a risk of viewing pat-
terns as a methodology for only removing unwanted effects of a design
rather than tools to support creative design work. Second, many of
the patterns we identified described characteristics that more or less
automatically guaranteed other characteristics in the game, in other
words, the problem described in a pattern might easily be solved by
applying a related and more specific pattern. Third, the effect of in-
troducing, removing, or modifying a game design pattern in a game
affected many different aspects of the gameplay, making game design
patterns imprecise tools for solving problems mechanically. However,
we believed that game design patterns offer a good model for how
to structure knowledge about gameplay that could be used both for
design and analysis of games.

Based on these conclusions, we have chosen to define game design
patterns in the following fashion: game design patterns are semifor-
mal interdependent descriptions of commonly reoccurring parts of
the design of a game that concern gameplay.” (Björk & Holopainen,
2005, 34)

This decision makes their pattern approach indistinguishable from the game
vocabularies discussed above, and subjects it to all the associated problems.
Their book contains hundreds of patterns, and their website has hundreds more.
This is indicative of Björk and Holopainen’s dedication to their framework, but
also of the fact that their patterns are not built on a strong theoretical notion of
what games are and how gameplay emerges from game parts. Their mention of
games as state machines (Björk & Holopainen, 2005, 8) is not enough to carry

7Also know as the ‘Gang of Four’.



Chapter 3 | Game Design Theory 53

the weight of the whole framework. The number of patterns used by software
engineering, by contrast, is much lower: a typical introduction has about twenty
patterns. I doubt that the diversity of problems and solutions encountered in
games is one order of magnitude larger than those encountered in software en-
gineering. The real difference, is that software design patterns are based on the
principles of object-oriented software design. This gives the patterns focus and
provides leverage on the problems they need to deal with, leading to patterns
that are further abstracted from typical applications or implementations. With-
out a clear theoretical vision on games, drafting patterns becomes an exercise
in cataloging reoccurring parts of games, without ever questioning why they re-
occur or whether these and related patterns might be the result of some deeper
mechanism at work within games. Where Christopher Alexander starts from
the notion that his design patterns ultimately allow us to approach some qual-
ity that cannot be named, but which is objective nonetheless, the game design
patterns lack a similar theoretical focal point.8

Design patterns work well for architecture and software engineering because
they codify a particular quality in their respective domain. In order to replicate
their success for game design, a similar notion of quality within games should
serve as its foundation. Unfortunately, Björk and Holopainen do not formulate
such a quality for games. Without such a quality no set of game design patterns
can be anything more than a vocabulary of games. The notion of games as state
machines as mentioned by Björk and Holopainen could be the starting point to
develop a notion of quality within games, an opportunity which is missed by
Björk and Holopainen, but which I will explore further.

3.6 Mapping Game States
Games can be, and often are, understood as state machines: there is an

initial state or condition and actions of the player (and often the game, too) can
bring about new states until an end state is reached (see for example Järvinen,
2003; Grünvogel, 2005). In the case of many single-player video games either
the player wins or the game ends prematurely. The game’s state usually reflects
the player’s location, the location of other players, allies and enemies, and the
current distribution of vital game resources. From a game’s state the player’s
progress towards a goal can be read.

There are several techniques to represent state machines. Finite state ma-
chine diagrams, for example, represent state machines with a finite set of states
and a finite set of transitions between states. One state is the initial state and
there might be any number of end states. To represent a game as a finite state
machine, all the states the game can be in need to be identified. Next all possible
transitions from state to state need to be identified. For certain simple games
this works. For example, figure 3.4 represents a finite state machine describing

8Although it must be noted that Alexander’s pattern language also includes several hundred
described patterns. In that sense game design patterns are not very dissimilar. However,
Alexander’s pattern language describes a fairly large number of domains: buildings, towns,
etc. The sets that describe each individual domain are much smaller.



54 Joris Dormans | Engineering Emergence

Figure 3.4: A finite state machine representing an adventure game.

Figure 3.5: A more complex finite state machine, but one that still produces a finite
set of trajectories.

a fairly straightforward and relatively simple, generic adventure game. This dia-
gram utilizes a simplified version of the more elaborate state machines diagrams
specified by Unified Modeling Language (UML) (Fowler, 2004, 107-116).

Many things have been omitted from this finite state machine. For example,
the way the player moves through the world has been left out, which is no
trivial aspect in an action-adventure game with a strong emphasis on exploring
(as is the case with most action-adventure games). Still, movement is easily
abstracted away from this diagram as movement does not seem to bring any
relevant changes to the game state (other than the requirement of being in a
certain location to be able to execute a particular action).

The question is whether or not this type of representation of a game is of
any use. Looking at the diagram this game does not look complex at all. The
possible set of different trajectories through the finite state machine is very
limited. The only possibilities are abcde and abdce. This game is a machine
that cannot produce any other result. It is, to use Jesper Juul’s categories, a
game of progression, and not a game of emergence (Juul, 2005, 5). To be fair,
most adventure games have a much larger set of states and player actions that
trigger state transitions. There might be side quests for the player to follow, or
even optional paths that lack the symmetry of the two branches in figure 3.4. A
game like this might grow in complexity very fast (see for example figure 3.5),
but still the number of possible trajectories remains ultimately finite (unless one
introduces loops, see below). Yet this is what many games have done in the
past.

One way to create infinite possible trajectories is to introduce loops. Noam
Chomsky has shown that by including loops in a state machine the set of possible
results becomes infinite (Chomsky, 1957, 18-25). For example we could allow
the player to go back after opening the door and fight another monster (see
figure 3.6). The possible set of results is now {abcde, abdce, ababcde, ababdce,



Chapter 3 | Game Design Theory 55

Figure 3.6: A looping finite state machine representing an adventure game.

Figure 3.7: A recursive finite state machine representing an adventure game.

abababcde, abababdce, ..., etc.}; the player can fight an infinite host of monsters
before proceeding. Of course, this has little purpose in the context of the game,
unless the player is awarded experience points for defeating each monster and the
number of experience points somehow affects the player’s chance of defeating the
end boss (which might very well be the case in a computer role-playing game).
However, if this were the case, one might argue that each level of experience
would in fact constitute a new state, leading to an infinite number of states in
the diagram.

Finite state machines lack a construct for memory, which would solve the
experience points problem described above. To deal with the memory problem
William A. Woods designed “augmented transition networks” which uses recur-
sion and a stack (Woods, 1970). In an augmented transition network a transition
might invoke a new state in the same or in a separate network of states and tran-
sitions. This would cause the old state to be pushed onto the stack and the new
state to be activated. When the machine encounters an end state, it recalls the
last state pushed on to the stack and proceeds from there. It only terminates
when nothing is left on the stack. In an augmented transition network represen-
tation of the adventure game above, every time the player fights a monster the
network would call itself recursively, and thus every fight would be pushed to
the stack, and the number of fights on the stack can be checked when the player
fights the boss monster (see figure 3.7).

Game states are usually much better expressed using a mix of variables and



56 Joris Dormans | Engineering Emergence

states. Not only allows such a mixture to model the large number of states
encountered in most games, it also shifts attention towards the transitions be-
tween the states, which corresponds to user actions. It is possible to construct
a diagram for Risk with only four states and seven transitions (figure 3.8) in
which each transition affects one or more variable registers representing terri-
tories, armies and cards. The diagram shows many loops, and as a result an
infinite number of different paths through the state machine is possible. A dia-
gram that focuses on transitions is clearly more capable to capture the nature
of games and the varied sessions of play. However, the diagram is not very easy
to read as some sort of pseudo code is needed to represent the exact mechanics
that checks and changes the variable registers.

Petri nets are an alternative modeling technique suited for game machines
that are explored by a few researchers (Natkin & Vega, 2003; Brom & Abonyi,
2006; Araújo & Roque, 2009). Petri nets work with a system of nodes and
connections. A particular type of node (places), can hold a number of tokens.
In a Petri net a place can never be connected directly to another place, instead a
place must be connected to a transition, and a transition must be connected to
a place. In a classic Petri net places are represented as open circles, transitions
are represented as squares and tokens are represented as smaller, filled circles
located on a place. In a Petri net tokens flow from place to place; the distribution
of tokens over spaces represents the current state of the Petri net (see figure 3.9).
This way the number of states a Petri net can express is much larger than with
finite state machine diagrams. Petri nets put much more focus on the transitions
and have a natural way of representing integer values through the distribution
of tokens over the places in the network. Indeed, “Petri Nets tend to be, in
general, a more economic representation when state-space complexity increases”
(Araújo & Roque, 2009).

One of the very promising advantages of the use of Petri nets, is that they
have a very solid mathematic foundation. Petri nets can be easily verified and
simulated. They are almost like a visual programming language. But this ad-

Figure 3.8: A state diagram for Risk



Chapter 3 | Game Design Theory 57

Figure 3.9: Four iterations of the same Petri net showing movement of tokens through
the network

vantage often is a double edged sword. Petri nets can model a complete game
with a high level of detail, but this frequently leads to quite complex diagrams
which try to capture a game in its entirety. Petri nets can become the equivalent
of a game’s source code, and just as inaccessible to a non-programmer.

3.7 Game Diagrams
State machine diagrams and Petri nets are not the only diagrammatic ap-

proaches to deal with the problem of game design. Over the years, a few other di-
agrammatic or systematic approaches have been developed that deal with games
exclusively. Game theory as invented by John von Neumann, can be seen as one
of the earliest attempts to deal with game-like systems that feature a similar
state-space explosion as we have seen with finite state machine diagrams. One
could try to map this sort of systems with decision trees, but they would quickly
grow out of control. Instead, game theory uses matrices to chart the gains or
losses of possible moves in relation to the opponents move. From these matrices
rational strategies, or the lack thereof, should become apparent (see Binmore,
2007). Emmanuel Guardiola and Stéphane Natkin (2005) use similar matrices to
represent all possible interactions between a single player and a computer game.
Game theory and its application in computer games focuses on the actions of the
players. It is a very useful technique to balance actions and prevent dominant
strategies to emerge. Game theory works best with relatively simple, two-player
games; it seems to restrict itself mostly to a formal theory of gameplay decisions,
which in itself is a relevant subset of game design. However, it does not scale
very well to the scope of modern computer games, which includes much more
elements (Salen & Zimmerman, 2004, 243).

Raph Koster’s exploration in game diagrams presents yet another approach.
Presented at the Game Developers Conference in 2005, his focus is on atomic
particles that make up the game experience; on what he calls the ‘ludemes’
and devising a graphical language for them (Koster, 2005a). These ‘ludemes’
are essentially the core mechanics of a game. Koster proposes to harvest these
ludemes by reverse engineering existing games. Sadly, as Koster points out
himself, he does not succeed. Figure 3.10 shows his best take on diagramming
Checkers. He believes games can be diagrammed, but he also admits that the
language he came up with is not sufficient for the task.

Inspired by Raph Koster, Stéphane Bura takes the idea of creating game dia-



58 Joris Dormans | Engineering Emergence

Figure 3.10: Raph Koster’s diagram of Checkers (2005a).

grams one step further (2006). Combining Koster’s approach with his experience
with Petri nets, Bura designs game diagrams that try to capture a game’s struc-
ture at a higher level of abstraction than simply its core rules. Removing game
diagrams from the burden of modeling rules at the lowest level, allows Bura to
focus more on the emergent properties of games. His diagram models notions
such as ‘skill’ and ‘luck’ as abstract resources that affect other actions in the
diagram, either by enabling or inhibiting them. Figure 3.11 shows the diagram
Bura created to model Blackjack. As should become clear from this diagram,
Bura tries to capture the entire ‘gestalt’ of the game into a single image. In this
diagram the elements that model ‘skill’, ‘luck’ and ‘money’ are similar to places
in a Petri net and can accumulate tokens. The elements ‘gain’ and ‘risk’ act
like transitions. They consume and produce resources according to the arrows
that connect them to other arrows. This diagram also includes two inhibiting
connections (lines that end in a circle) to denote that the ‘luck’ of the house
inhibits the ‘gain’ of the player and that the ‘skill’ of the player inhibits the
money he or she risks. Although Bura is more optimistic than Koster, he also
admits that much work still needs to be done. He suggests a standard library
of ludemes to work with and sub-diagrams to increase the detail. But to my
knowledge, none of these extensions have been published.

There are also a few examples of the use of UML for representing game
systems diagrammatically. Taylor et al. (2006) extend UML use-case diagrams
to describe game-flow: the experience of the player. Their focus is on the play
session and the progression of the player through the game. Perdita Stevens
and Rob Pooley use class diagrams, collaboration diagrams and state machines
diagrams (three different types of UML diagrams) in their educational case study
of modeling the structure of Chess and Tic-Tac-Toe with standard UML



Chapter 3 | Game Design Theory 59

Figure 3.11: Stéphane Bura’s diagram of Blackjack. (2006)

(Stevens & Booley, 1999, 178-189). These attempts suffer from problems similar
to other types of game diagrams. As a specification language, UML can be very
detailed and inaccessible to non-programmers. In a way, UML is too universal
to capture the particular structures that are important in the domain of games.

3.8 Visualizing Game Economies
Working from an extended version of UML collaboration diagrams, as de-

scribed by Bran Selic and Jim Rumbaugh (1998), I experimented with using
UML notation to capture how different parts of a game interact (Dormans,
2008b). In contrast to the previous attempts to diagram game mechanics, I
started from the idea that these diagrams should map the internal economy that
drive the emergent behavior in many games as described by Adams & Rollings
(2007). This perspective is discussed in further detail in Chapter 4. In these
diagrams I focused on the flow of resources and flow of information between
game elements. Figure 3.12 displays the UML diagram I created for the game
Power Grid. It shows the most important elements and the communication in
the form of flow of resources and information between them. The solid lines and
black shapes indicate flow of resources, and dotted lines and white connections
indicate flow of information.

In the discussion of these diagrams I quickly zoomed in on the feedback
structure that can be read from the diagram. Feedback is realized through a



60 Joris Dormans | Engineering Emergence

Figure 3.12: Power Grid in an adaptation of UML collaboration diagrams.

Figure 3.13: The feedback structure in Power Grid.

closed circuit of communication. Figure 3.13 shows the feedback structure for
Power Grid in a shorthand notation that omits much of the UML. From this
and other analyses I started extracting common patterns found in these feedback
structures (see figure 3.14).

Although this approach produces interesting results and was positively re-
ceived by game designers and researchers, there are a number of problems with
it. As with many other approaches discussed in this chapter, it is geared to-
wards documenting existing games, although the notation has been used as a
brainstorming tool during design workshops. During brainstorming writing full
UML by hand proved to be impracticable; the shorthand notation was used more
often. Finally, the diagrams are static, while they represent a highly dynamic
system. There are cues in the diagram that suggest the dynamic behavior of the
game it represents, but it leaves too much room for interpretation: one person
might read something completely different from the same diagram than the next



Chapter 3 | Game Design Theory 61

Figure 3.14: The feedback patterns extracted from Power Grid.

person.
Independent from my work, Morgan McGuire and Odest Chadwicke Jenkins

use a similar approach for their “commodity flow graphs” (see figure 3.15). These
graphs also represent a game’s economy and flow of commodities (2009). Their
approach is comparable to my attempts to map a game’s economy, but is different
on three important points:

1. McGuire and Jenkins interpret the notion of economy quite literally and
restrict themselves to games that include trading and tangible resources
(“commodities”), whereas the notion of internal economy taken from Adams
and Rollings ‘commodifies’ many more elements of games that are gener-
ally less tangible such as player and enemy health in a shooter game.

2. Although feedback does appear in one of the two examples, their graphs
are not designed to foreground feedback mechanisms.

3. Their graphs are quite informal, even though some elements are explained
in the accompanying text, many important details are not.

3.9 Industry Skepticism
Not everybody in the game industry thinks that developing design theory

or methodology is a very good idea. In an interview with Brandon Sheffield,
Raph Koster recalls that his presentation on game diagrams split his audience
at the Game Developers Conference in 2005. Some thought it was good, some
thought it was a complete waste of time (Sheffield, 2007). I have come across
similar sentiments in discussions about my work with people working in the game
industry. Usually those who dislike the premise of design methodology argue that
they are academic toys with little relevance for real, applied game design; that
they, indeed, are a waste of time. Another common argument against design
methodology is that they can never capture the creative essence that is the
heart of successful games. In this argument, design methodologies represent an
attempt to destroy the very soul of the art of game design; no method can replace
the creative genius of the individual designer (see Guttenberg, 2006). Starting
with the first, I will address both arguments below.



62 Joris Dormans | Engineering Emergence

Figure 3.15: Commodity flow graph for Settlers of Catan, after McGuire &
Jenkins (2009, 243).

The current vocabularies, aids and frameworks have a poor track record. As
should have become clear from the discussion above, there are many of these
out there, many of them designed by academics, not all of whom have actual,
hands-on game design experience. The return value of using them, set against
the often considerable investment required to learn them, is not particular high,
especially for those tools that excel in analyzing games, which is done more
often within universities than outside. The same goes for those frameworks
that allow designers to explore the design-space. The design programs within
universities allow for such exploration, whereas outside there is little time for
such theoretical exploration. The argument that the industry too would benefit
from such exploration is rather hollow if money needs to be made and one cannot
afford to take chances on a new innovative concept.

The sentiment is valid, but does not cripple the effort to create game design
methodologies. It simply suggests criteria for evaluating design methods: design
methods should help design games, not just analyze them. This seems obvious,
but many methods that have been developed over the years are analytical meth-
ods, even when they sometimes are presented as design tools. These methods
help us understand existing games or explore the hypothetical design space, but
offer little practical guidance on how to build them. What is more, design meth-
ods should return the investment required to learn them. The latter criterium
can be met in two ways: make sure that the required investment is low, or make
sure that the return is high. Obviously a design method should aim to do both
in order to maximize the return on investment.

The second argument, that no design method can replace the creative genius



Chapter 3 | Game Design Theory 63

of the individual designer, is more problematic. People who subscribe to this
opinion dismiss the whole idea of design methodology. However, this opinion is
often informed by a rather naive conception of art. Art is, and always has been,
the combination of creative talent, practiced technique and hard work. There
is no point in denying that one artist has more talent than another, but pure
talent rarely makes up for the other two aspects. Especially within an industry
where much money rides on the success of each project, investors simply cannot
afford to gamble on creative talent to deliver all the time.

The image of the artist as the creative genius is a romantic vision that rarely
fits reality. To create art, one must learn the techniques of the trade and work
hard. This has always been the case for all forms of art. There is no reason to
assume that games are any different. The artist’s techniques are many. They
range from the practical to the theoretical. Painters learn how to use a brush
with different types of paint, on the one hand, but learn about the mathemati-
cal principles of perspective and the psychological principles of cognition on the
other. The development of abstract art throughout the nineteenth and early
twentieth century has been a gradual and deliberate intellectual process (Rosen-
blum, 1975). The scientific invention of the perspective revolutionized Renais-
sance painting (Panofsky, 1960). The foundation of literary theory that Aristotle
laid over two thousand years ago is still taught today (Vogler, 2007). What has
changed over the years is the widening gap between artist and academic commu-
nities. During the Middle Ages art prevailed where academia hardly survived,
as a result the artist and the academic frequently were the same person. These
days, with thriving universities, being an academic has become a profession of its
own, but that does not mean that the ties between art and academia have been
severed. There are still many artists that contribute to the academic debate and
there are still many academics that contribute to the evolution of art. Games
are no different.

In contrast to what skeptics of design methodologies fear, design methods help
shape games but they cannot replace the creative genius. No matter how good a
method or tool is, it can never replace the vision of the designer, nor can it replace
the hard work involved in designing a game. At best it can ease the burden and
refine one’s techniques. Sometimes methods and tools seem restrictive; when
holding a hammer everything starts to look like a nail. But the best methods do
not restrict a designers vision. Rather, they should enhance it, enabling them
to work faster and create better results. Ideally, design methods also facilitate
teamwork and collaboration. For example a design tool that allows accurate
representation of game elements, would reduce the chance that individual team
members end up working toward different visions.

Game designers that take no interest in design methodology are either foolish
or lazy. However, designers have all rights to be critical of design methods, and
I do hope they remain so in the future. After all, they are the final judges that
decide whether or not a given method is worth their time and ultimately expand
their expressive power with the medium of games.



64 Joris Dormans | Engineering Emergence

3.10 Conclusions
To summarize, over the years a number of frameworks, vocabularies and work

methods have been created to assist game designers, with varying success. Game
design documents are generally considered cumbersome and inefficient; they are
seldomly put to good use. Everybody uses game design documents in their own
way. For some designers, these documents capture the creative direction early in
the development process, while for others they are a tedious requirement of the
job of game designer. For the purpose of the discussion here, no generic wisdom
to aid the development of design tools can be extracted from the diffuse practice
of writing design documents.

The MDA framework provides a useful lens on the different aspects of game
design, and can help designers to understand where to start the huge task of
designing a game. It breaks down games into three understandable and useful
layers, and teaches inexperienced designers to look through the outer layers of
a game into the mechanics core. However, the framework has evolved little
over the years, and close examination of its core concepts is likely to raise more
questions than it answers. To serve as a design tool that goes beyond the very
basics of game design; the MDA framework lacks scrutiny and accuracy.

Player-centric design practices, where short iterations and frequent play-
testing are the key, are more successful in structuring the hard and laborious
process of designing games. However, there is room for improvement. With the
proper methods and tools every iteration can be made more effective, and new
ways of gathering qualitative and quantitative data might present themselves.
The theory and tools presented in this dissertation are best embedded within in
play-centric design process: they can help designers to improve every iteration,
but they cannot take away the necessity to build prototypes and test them with
real players.

There have been a number of attempts to create game vocabularies and pat-
tern libraries that allow us to talk about games in better, more accurate terms.
However, none of these vocabularies has really gained enough momentum to be-
come something resembling a standard that spans both industry and academia.
From a pragmatic point of view, these vocabularies require a considerable effort
to learn while they are most successful in the analysis of existing games; they
seem to be more useful for academics than they are for developers. In addition,
they usually lack a clear theoretical vision on the artifacts they intend to de-
scribe. The result is that these vocabularies hardly scratch the surface of games
and fail to contribute much to what most designers already knew intuitively.

The use of finite state machine diagrams or Petri nets to map games as state
machines are both valuable techniques with a proven track record in their re-
spective domains. However, their respective difficulties in capturing the essence
of games indicates that simply framing games as state machines is not good
enough. The number of game states usually is not finite, and their complexity
quickly becomes problematic if one tries to model a game in every detail. A the-
oretic perspective on games first needs to develop a concise and objective notion
of quality in games before it can help us understand their inner machinations



Chapter 3 | Game Design Theory 65

from a more generic scope. Once this notion has been developed, a diagram-
matic language can be devised to represent these machinations. Petri nets are
more promising but are less accessible to designers.

Game specific diagrams are a relatively unexplored approach towards the
development of game design tools. Apart from some preliminary attempts by
Koster, Bura, McGuire & Jenkins, and myself, little is done in this area. None of
these attempts can claim to be successful and accepted by the game development
community. Yet, the results are interesting, especially if they focus on a more
abstract gestalt of games. A more abstract and generic scope to represent game
designs seems to come quite natural to diagrams. At the same time, they are
fairly easy and intuitive to learn: most diagrammatic languages utilize only a few
core, reusable elements. When these elements express a generic and objective
notion of quality in games, these diagrams could become quite powerful.

Game design tools are needed; they can be used to improve the process of
game design, but the poor track record of current academic approaches created
some resistance within the game industry against the whole notion of design
methodology. Part of this resistance is understandable, as methods frequently
fail to return the investment required to use them. This means that we need
to rethink how design methods and tools should be used: they should not only
facilitate analysis or theoretic exploration of game concepts, rather they should
really help the designer to design. We should also take note of the fact that
game design methods cannot replace the creative talent of the individual game
designer. Game design methods should refine a designer’s technique and increase
the designer’s expressive power, any game design method should ultimately be
a tool, but it remains up to designer to make those tools work.


